Wednesday, March 12, 2008


Of all the senses, vision is the most important for safe flight. Most of the things perceived while flying are visual or heavily supplemented by vision. As remarkable and vital as it is, vision is subject to some limitations, such as illusions and blind spots. The more a pilot understands about the eyes and how they function, the easier it is to use vision effectively and compensate for potential problems.

The functions of eye much like a camera. Its structure includes an aperture, a lens, a mechanism for focusing, and a surface for registering images. Light enters through the cornea at the front of the eyeball, travels through the lens and falls on the retina. The retina contains light sensitive cells that convert light energy into electrical impulses that travel through nerves to the brain. The brain interprets the electrical signals to form images. There are two kinds of light sensitive cells in the eyes: rods and cones.

The cones are responsible for all color vision, from appreciating a glorious sunset to discerning the subtle shades in a fine painting. Cones are present throughout the retina, but are concentrated toward the center of the field of vision at the back of the retina. There is a small pit called the fovea where almost all the light sensing cells are cones. This is the area where most "looking" occurs (the center of the visual field where detail, color sensitivity, and resolution are highest).

While the cones and their associated nerves are well suited to detecting fine detail and color in high light levels, the rods are better able to detect movement and provide vision in dim light. The rods are unable to discern color but are very sensitive in low light levels. The trouble with rods is that a large amount of light overwhelms them, and they take a long time to "reset" and adapt to the dark again. There are so many cones in the fovea that the very center of the visual field hardly has any rods at all. So in low light, the middle of the visual field isn't very sensitive, but farther from the fovea, the rods are more numerous and provide the major portion of night vision.

The area where the optic nerve enters the eyeball has no rods or cones, leaving a blind spot in the field of vision. Normally, each eye compensates for the other's blind spot.

Another problem associated with flying at night, in instrument meteorological conditions and/or reduced visibility is empty-field myopia, or induced near sightedness. With nothing to focus on, the eyes automatically focus on a point just slightly ahead of the airplane. Searching out and focusing on distant light sources, no matter how dim, helps prevent the onset of empty-field myopia.

No comments:

Post a Comment