Friday, February 11, 2011

Aircraft Weight Control

Weight is a major factor in airplane construction and operation, and it demands respect from all pilots and particular diligence by all A&P mechanics and repairmen.
Excessive weight reduces the efficiency of an aircraft and the safety margin available if an emergency condition should arise.

When an aircraft is designed, it is made as light as the required structural strength will allow, and the wings or rotors are designed to support the maximum allowable weight. When the weight of an aircraft is increased, the wings or rotors must produce additional lift and the structure must support not only the additional static loads, but also the dynamic loads imposed by flight maneuvers. For example, the wings of a 3,000-pound airplane must support 3,000 pounds in level flight, but when the airplane is turned smoothly and sharply using a bank angle of 60°, the dynamic load requires the wings to support twice this, or 6,000 pounds.

Severe uncoordinated maneuvers or flight into turbulence can impose dynamic loads on the structure great enough to cause failure. In accordance with Title 14 of the Code of Federal Regulations (14 CFR) part 23, the structure of a normal category airplane must be strong enough to sustain a load factor of 3.8 times its weight. That is, every pound of weight added to an aircraft requires that the structure be strong enough to support an additional 3.8 pounds. An aircraft operated in the utility category must sustain a load factor of 4.4, and acrobatic category aircraft must be strong enough to withstand 6.0 times their weight.

The lift produced by a wing is determined by its airfoil shape, angle of attack, speed through the air, and the air density. When an aircraft takes off from an airport with a high density altitude, it must accelerate to a speed faster than would be required at sea level to produce enough lift to allow takeoff; therefore, a longer takeoff run is necessary. The distance needed may be longer than the available runway. When operating from a high-density altitude airport, the Pilot’s Operating Handbook (POH) or Airplane Flight Manual (AFM) must be consulted to determine the maximum weight allowed for the aircraft under the conditions of altitude, temperature, wind, and runway conditions.

Aircraft Weight and Balance Control

There are many factors that lead to efficient and safe operation of aircraft. Among these vital factors is proper weight and balance control. The weight and balance system commonly employed among aircraft consists of three equally important elements: the weighing of the aircraft, the maintaining of the weight and balance records, and the proper loading of the aircraft. An inaccuracy in any one of these elements nullifies the purpose of the whole system. The final loading calculations will be meaningless if either the aircraft has been improperly weighed or the records contain an error.

Improper loading cuts down the efficiency of an aircraft from the standpoint of altitude, maneuverability, rate of climb, and speed. It may even be the cause of failure to complete the flight, or for that matter, failure to start the flight. Because of abnormal stresses placed upon the structure of an improperly loaded aircraft, or because of changed flying characteristics of the aircraft, loss of life
and destruction of valuable equipment may result. The responsibility for proper weight and balance control begins with the engineers and designers, and extends to the aircraft mechanics that maintain the aircraft and the pilots who operate them.

Modern aircraft are engineered utilizing state-of-the-art technology and materials to achieve maximum reliability and performance for the intended category. As much care and expertise must be exercised in operating and maintaining these efficient aircraft as was taken in their design and manufacturing.

The designers of an aircraft have set the maximum weight, based on the amount of lift the wings or rotors can provide under the operation conditions for which the aircraft is designed. The structural strength of the aircraft also limits the maximum weight the aircraft can safely carry. The ideal location of the center of gravity (CG) was very carefully determined by the designers, and the maximum deviation allowed from this specific location has been calculated.

The manufacturer provides the aircraft operator with the empty weight of the aircraft and the location of its emptyweight center of gravity (EWCG) at the time the certified aircraft leaves the factory. Amateur-built aircraft must have this information determined and available at the time of certification.

The airframe and powerplant (A&P) mechanic or repairman who maintains the aircraft keeps the weight and balance records current, recording any changes that have been made because of repairs or alterations. The pilot in command of the aircraft has the responsibility on every flight to know the maximum allowable weight of the aircraft and its CG limits. This allows the pilot to determine on the preflight inspection that the aircraft is loaded in such a way that the CG is within the allowable limits.