Some light aircraft utilize different methods of determining weight and balance from the traditional fixed and rotorwing aircraft. These aircraft achieve flight control differently than the fixed-wing airplane or helicopter. Most notable of these are weight shift control (WSC) aircraft (also known as trikes), powered parachutes, and balloons.
These aircraft typically do not specify either an empty weight center of gravity or a center of gravity range. They require only a certified or approved maximum weight.
To understand why this is so, a look at how flight control is achieved is helpful.
As an example, airplanes and WSC aircraft both control flight under the influence of the same four forces (lift, gravity, thrust, and drag), and around the same three axes (pitch, yaw, and roll). However, each aircraft accomplishes this control in a very different manner. This difference helps explain why the fixed-wing airplane requires an established weight and a known center of gravity, whereas the WSC aircraft only requires the known weight.
The fixed-wing airplane has moveable controls that alter the lift on various airfoil surfaces to vary pitch, roll, and yaw. These changes in lift, in turn, change the characteristics of the flight parameters. Weight normally decreases in flight due to fuel consumption, and the airplane center of gravity changes with this weight reduction. An airplane utilizes its variable flight controls to compensate and maintain controllability through the various flight modes and as the center of gravity changes. An airplane has a center of gravity range or envelope within which it must remain if the flight controls are to remain effective and the airplane safely operated.
The WSC aircraft has a relatively set platform wing without a tail. The pilot, achieves control by shifting weight. In the design of this aircraft, the weight of the airframe and its payload is attached to the wing at a single point in a pendulous arrangement. The pilot through the flight controls, controls the arm of this pendulum and thereby controls the aircraft. When a change in flight parameter is desired, the pilot displaces the aircraft’s weight in the appropriate distance and direction. This change momentarily disrupts the equilibrium between the four forces acting on the aircraft. The wing, due to its inherent stability, then moves appropriately to re-establish the desired relationship between these forces. This happens by the wing flexing and altering its shape. As the shape is changed, lift is varied at different points on the wing to achieve the desired flight parameters.
The flight controls primarily affect the pitch-and-roll axis. Since there is no vertical tail plane, minimal or no ability exists to directly control yaw. However, unlike the airplane, the center of gravity experienced by the wing remains constant. Since the weight of the airframe acts through the single point (wing attach point), the range over which the weight may act is fixed at the pendulum arm or length. Even though the weight decreases as fuel is consumed, the weight remains focused at the wing attach point. Most importantly, because the range is fixed, the need to establish a calculated range is not required.
The powered parachute also belongs to the pendulumstyle aircraft. Its airframe center of gravity is fixed at the pendulum attach point. It is more limited in controllability than the WSC aircraft because it lacks an aerodynamic pitch control. Pitch (and lift) control is primarily a function of the power control. Increased power results in increased lift; cruise power amounts to level flight; decreased power causes a descent. Due to this characteristic, the aircraft is basically a one-air speed aircraft. Once again, because the center of gravity is fixed at the attach point to the wing, there can be no center of gravity range.
Roll control on a powered parachute is achieved by changing the shape of the wing. The change is achieved by varying the length of steering lines attached to the outboard trailing edges of the wing. The trailing edge of the parachute is pulled down slightly on one side or the other to create increased drag along that side. This change in drag creates roll and yaw, permitting the aircraft to be steered.
The balloon is controlled by the pilot only in the vertical dimension; this is in contrast to all other aircraft. He or she achieves this control through the use of lift and weight. Wind provides all other movement. The center of gravity of the gondola remains constant beneath the balloon envelope. As in WSC and powered-parachute aircraft, there is no center of gravity limitation.
Aircraft can perform safely and achieve their designed efficiency only when they are operated and maintained in the way their designers intended. This safety and efficiency is determined to a large degree by holding the aircraft’s weight and balance parameters within the limits specified for its design. The remainder of this handbook describes the way in which this is done.
These aircraft typically do not specify either an empty weight center of gravity or a center of gravity range. They require only a certified or approved maximum weight.
To understand why this is so, a look at how flight control is achieved is helpful.
As an example, airplanes and WSC aircraft both control flight under the influence of the same four forces (lift, gravity, thrust, and drag), and around the same three axes (pitch, yaw, and roll). However, each aircraft accomplishes this control in a very different manner. This difference helps explain why the fixed-wing airplane requires an established weight and a known center of gravity, whereas the WSC aircraft only requires the known weight.
The fixed-wing airplane has moveable controls that alter the lift on various airfoil surfaces to vary pitch, roll, and yaw. These changes in lift, in turn, change the characteristics of the flight parameters. Weight normally decreases in flight due to fuel consumption, and the airplane center of gravity changes with this weight reduction. An airplane utilizes its variable flight controls to compensate and maintain controllability through the various flight modes and as the center of gravity changes. An airplane has a center of gravity range or envelope within which it must remain if the flight controls are to remain effective and the airplane safely operated.
The WSC aircraft has a relatively set platform wing without a tail. The pilot, achieves control by shifting weight. In the design of this aircraft, the weight of the airframe and its payload is attached to the wing at a single point in a pendulous arrangement. The pilot through the flight controls, controls the arm of this pendulum and thereby controls the aircraft. When a change in flight parameter is desired, the pilot displaces the aircraft’s weight in the appropriate distance and direction. This change momentarily disrupts the equilibrium between the four forces acting on the aircraft. The wing, due to its inherent stability, then moves appropriately to re-establish the desired relationship between these forces. This happens by the wing flexing and altering its shape. As the shape is changed, lift is varied at different points on the wing to achieve the desired flight parameters.
The flight controls primarily affect the pitch-and-roll axis. Since there is no vertical tail plane, minimal or no ability exists to directly control yaw. However, unlike the airplane, the center of gravity experienced by the wing remains constant. Since the weight of the airframe acts through the single point (wing attach point), the range over which the weight may act is fixed at the pendulum arm or length. Even though the weight decreases as fuel is consumed, the weight remains focused at the wing attach point. Most importantly, because the range is fixed, the need to establish a calculated range is not required.
The powered parachute also belongs to the pendulumstyle aircraft. Its airframe center of gravity is fixed at the pendulum attach point. It is more limited in controllability than the WSC aircraft because it lacks an aerodynamic pitch control. Pitch (and lift) control is primarily a function of the power control. Increased power results in increased lift; cruise power amounts to level flight; decreased power causes a descent. Due to this characteristic, the aircraft is basically a one-air speed aircraft. Once again, because the center of gravity is fixed at the attach point to the wing, there can be no center of gravity range.
Roll control on a powered parachute is achieved by changing the shape of the wing. The change is achieved by varying the length of steering lines attached to the outboard trailing edges of the wing. The trailing edge of the parachute is pulled down slightly on one side or the other to create increased drag along that side. This change in drag creates roll and yaw, permitting the aircraft to be steered.
The balloon is controlled by the pilot only in the vertical dimension; this is in contrast to all other aircraft. He or she achieves this control through the use of lift and weight. Wind provides all other movement. The center of gravity of the gondola remains constant beneath the balloon envelope. As in WSC and powered-parachute aircraft, there is no center of gravity limitation.
Aircraft can perform safely and achieve their designed efficiency only when they are operated and maintained in the way their designers intended. This safety and efficiency is determined to a large degree by holding the aircraft’s weight and balance parameters within the limits specified for its design. The remainder of this handbook describes the way in which this is done.
No comments:
Post a Comment